Degradation and healing characteristics of small-diameter poly(epsilon-caprolactone) vascular grafts in the rat systemic arterial circulation.

نویسندگان

  • Erman Pektok
  • Benjamin Nottelet
  • Jean-Christophe Tille
  • Robert Gurny
  • Afksendiyos Kalangos
  • Michael Moeller
  • Beat H Walpoth
چکیده

BACKGROUND Long-term patency of conventional synthetic grafts is unsatisfactory below a 6-mm internal diameter. Poly(epsilon-caprolactone) (PCL) is a promising biodegradable polymer with a longer degradation time. We aimed to evaluate in vivo healing and degradation characteristics of small-diameter vascular grafts made of PCL nanofibers compared with expanded polytetrafluoroethylene (ePTFE) grafts. METHODS AND RESULTS We prepared 2-mm-internal diameter grafts by electrospinning using PCL (M(n)=80, 000 g/mol). Either PCL (n=15) or ePTFE (n=15) grafts were implanted into 30 rats. Rats were followed up for 24 weeks. At the conclusion of the follow-up period, patency and structural integrity were evaluated by digital subtraction angiography. The abdominal aorta, including the graft, was harvested and investigated under light microscopy. Endothelial coverage, neointima formation, and transmural cellular ingrowth were measured by computed histomorphometry. All animals survived until the end of follow-up, and all grafts were patent in both groups. Digital subtraction angiography revealed no stenosis in the PCL group but stenotic lesions in 1 graft at 18 weeks (40%) and in another graft at 24 weeks (50%) in the ePTFE group. None of the grafts showed aneurysmal dilatation. Endothelial coverage was significantly better in the PCL group. Neointimal formation was comparable between the 2 groups. Macrophage and fibroblast ingrowth with extracellular matrix formation and neoangiogenesis were better in the PCL group. After 12 weeks, foci of chondroid metaplasia located in the neointima of PCL grafts were observed in all samples. CONCLUSIONS Small-diameter PCL grafts represent a promising alternative for the future because of their better healing characteristics compared with ePTFE grafts. Faster endothelialization and extracellular matrix formation, accompanied by degradation of graft fibers, seem to be the major advantages. Further evaluation of degradation and graft healing characteristics may potentially lead to the clinical use of such grafts for revascularization procedures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular Endothelial Growth Factor Improves Physico-Mechanical Properties and Enhances Endothelialization of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Poly(ε-caprolactone) Small-Diameter Vascular Grafts In vivo

The combination of a natural polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and a synthetic hydrophobic polymer poly(ε-caprolactone) (PCL) is promising for the preparation of biodegradable and biocompatible small-diameter vascular grafts for bypass surgery. However, physico-mechanical properties and endothelialization rate of PHBV/PCL grafts are poor. We suggested that incorporatio...

متن کامل

Supporting, microporous, elastomeric, degradable prostheses to improve the arterialization of autologous vein grafts.

Arterial reconstructions with vein grafts fail more frequently than with arterial grafts. One of the causes of graft failure is damage due to overstretching of the graft wall. Overstretching is caused because the vein graft, which has a poorly developed medium, cannot withstand the arterial blood pressures. The aim of this study is to evaluate whether damage due to overstretching can be prevent...

متن کامل

In vitro and in vivo degradation of non-woven materials made of poly(epsilon-caprolactone) nanofibers prepared by electrospinning under different conditions.

The aim of this study was to prepare non-woven materials from a biodegradable polymer, poly(epsilon-caprolactone) (PCL) by electrospinning. PCL was synthesized by ring-opening polymerization of epsilon-caprolactone in bulk using stannous octoate as the catalyst under nitrogen atmosphere. PCL was then processed into non-woven matrices composed of nanofibers by electrospinning of the polymer from...

متن کامل

In Situ Tissue Engineering of Functional Small-Diameter Blood Vessels by Host Circulating Cells Only.

Inflammation is a natural phase of the wound healing response, which can be harnessed for the in situ tissue engineering of small-diameter blood vessels using instructive, bioresorbable synthetic grafts. This process is dependent on colonization of the graft by host circulating cells and subsequent matrix formation. Typically, vascular regeneration in small animals is governed by transanastomot...

متن کامل

Bioabsorbable Bypass Grafts Biofunctionalised with RGD Have Enhanced Biophysical Properties and Endothelialisation Tested In vivo

Small diameter arterial bypass grafts are considered as unmet clinical need since the current grafts have poor patency of 25% within 5 years. We have developed a 3D scaffold manufactured from natural and synthetic biodegradable polymers, poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(𝜀-caprolactone) (PCL), respectively. Further to improve the biophysical properties as well as endo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 118 24  شماره 

صفحات  -

تاریخ انتشار 2008